Improvement in the Synthesis of N,N'-Diacyl-1,2-di(4-pyridyl)ethylenediamines

M. F. Braña*, J. M. Castellano, M. L. López Rodriguez [1]

Departamento de Química, Facultad de Ciencias Químicas, Universidad Complutense, Madrid-3, Spain Received December 23, 1982

A better synthetic route to pharmacologically active N,N'-diacyl-1,2-di(4-pyridyl)ethylenediamines is described.

J. Heterocyclic Chem., 20, 1723 (1983).

Earlier work in these laboratories has led to the discovery of the synthesis of N,N'-diacyl-1,2-di(4-pyridyl)ethylenediamines 3 by reaction of N-(4-pyridylmethyl)amide N-oxides 2 with acetic anhydride [2,3]. These compounds show analgesic and antiinflammatory activity. The study on the structure-activity relationships was object of a paper [4].

Hamana described that quinoline N-oxide reacted with some active methylene compounds in the presence of acetic anhydride to give 2-substituted quinolines, accompanied by the deoxygenation of the N-oxide function. Thus the reaction can be extended to pyridine N-oxides [5].

We now report a more satisfactory novel procedure for the synthesis of 3, based upon the reaction of N-(4-pyridylmethyl)amide 1 with its N-oxide 2 in presence of acetic anhydride.

Figure 1

Heating to 70° a mixture of 1 (1 equivalent) with 2 (1 equivalent) and acetic anhydride (9 equivalents) for 3 hours furnished the diacylethylenediamines 3 in 90-100% yield (see Table). The mechanism for the formation of 3 involves the initial formation of acetoxy derivative 4, from the N-oxide 2 with acetic anhydride [6]. Evidence supporting the intermediacy of 4 in the conversion of 1 to 3 is offered by reaction of 4 with 1a in DMF to form 3a in the same yield.

Table 1

N,N'-Diacyl-1,2-di(4-pyridyl)ethylenediamines

Product	R	Yield (%)	Mp °C	Ref	Yield (%)	Mp °C
3a	3,5-(CH ₃) ₂ -C ₆ H ₃	42	336-338	[2]	98	338
3b	CH ₃	40	308	[3]	90	308
3c	(CH,-CH,-CH,),CH	43	339	[3]	95	340
3d	C,H,-CH,	22	312	[3]	98	311
3 e	C,H,	26	298	[3]	95	298
3f	4-CH ₃ -C ₄ H ₄	44	291	[3]	96	292
3g	3-CH ₃ -C ₆ H ₄	41	275	[3]	96	275
3h	2-CH ₃ -C ₆ H ₄	39	339	[3]	95	337
3i	4-tC4Ho-C6H4	70	305	[3]	100	305
3j	4-CH ₃ -O-C ₆ H ₄	44	299	[3]	92	298
3k	4-CH ₃ -SO ₂ -C ₆ H ₄	64	287	[3]	96	287
31	4-NO ₂ -C ₅ H ₄	54	312	[3]	98	312
3m	4-C, H,-C,H,	40	326	[3]	97	325
3n	4-Cl-C,H,	39	323	[3]	98	324
3o	3-Cl-C ₆ H ₄	38	297	[3]	92	297
3p	2-Cl-C ₆ H ₄	39	308	[3]	96	308
3q	3,5-Cl ₂ -C ₆ H ₃	38	275	[3]	99	277
3r	4-F-C,H,	33	288	[3]	97	289
3s	4-CF ₃ -C ₆ H ₄	38	316	[3]	96	316

EXPERIMENTAL

N, N'-Diacyl-1,2-di(4-pyridyl)ethylenediamines 3. General Procedure.

A mixture of N(4-pyridylmethyl)amide (0.01 mole), N(4-pyridylmethyl)amide N-oxide (0.01 mole) and 7 ml of acetic anhydride was heated to 70° in a water bath for 3 hours after which the precipitate was collected, washed with ethyl acetate and recrystallized to give 3.

Ethylenediamine 3a From 4.

A solution of 2.4 g (0.01 mole) of N-(4-pyridylmethyl)-3,5-dimethylbenzamide and 2.9 g (0.01 mole) of N-($(\alpha$ -acetoxy)-4-pyridylmethyl]-3,5-dimethylbenzamide in 5 ml of dimethylformamide was heated to 70° in a water

30

Figure 2

4

bath for 3 hours. The precipitate was collected, washed with ethyl acetate and recrystallized in DMF to afford 3a, yield 4.7 g (98%).

REFERENCES AND NOTES

- [1] New address: University of Florida, Department of Chemistry, Gainseville, Florida 32611, USA.
- [2] M. F. Braña and M. L. López Rodriguez, Tetrahedron Letters, 3923 (1980).
- [3] M. F. Braña, M. L. López Rodriguez, J. Garrido and C. M. Roldán, J. Heterocyclic Chem., 18, 1305 (1981).
- [4] M. F. Braña, R. López Arenosa, M. L. López Rodriguez and A. M. Sanz, Arzneim. Forsch., 33, 356 (1983).
- [5] M. Hamana, "Lectures in Heterocyclic Chemistry", R. N. Castle and E. F. Elslager, eds, Journal of Heterocyclic Chemistry, Inc. 170 South State Street, Orem, Utah 84057, 1972, p S-51.
- [6] M. F. Braña and M. L. López Rodriguez, J. Heterocyclic Chem., 18, 869 (1981).